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1. Introduction

BPS black holes in N = 2 supergravity theories have attracted revived attention recently,

with the discovery of deep connections between topological strings and the entropy of four-

dimensional [1] and five-dimensional [2, 3] black holes, as well as a direct relation between

4D black holes and 5D black holes and black rings, often known as the 4D-5D lift [4 – 7].

These advances have also led to much progress in our understanding of the topological

string amplitude, in particular with regard to its wave function character [8 – 14].

In this note, we revisit the holomorphic anomaly equations satisfied by the topological

string amplitude from the perspective of the 4D-5D lift. Our analysis is based on the

construction in [12], where the standard topological amplitude [15] (BCOV) was recast into

a purely holomorphic wave function satisfying a generalized heat equation, as first suggested

in [8] (see [13] for a closely related construction). In the same work, the algebraic nature

of the topological amplitude was elucidated in the context of so-called “magic” N = 2

supergravity theories [16], characterized by the fact that their moduli space is a symmetric

space. Some of these models are known to be consistent quantum N = 2 theories [17],

while others arise as truncations of theories with higher supersymmetry (see [18, 19] for

recent progress on this issue).
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The outline of this note is as follows. In section 2, we review the relevant results

from [12] pertaining to “magic” supergravities. In section 3.1, we observe that the relation

between the charges of 4D and 5D black holes related by the 4D-5D lift is a canonical trans-

formation. This motivates us to introduce a new “5D” polarization for the topological wave

function, Ψ5D(Qi, J), related to the standard “real” polarization ΨR(pI) by an appropriate

Bogoliubov transformation. In section 3.2, we show that this relation is an instance of the

Gopakumar-Vafa connection between 5D black holes and topological strings [2, 3], provided

we identify Ψ5D(Qi, J) with the degeneracies of 5D BPS black holes. In section 3.3, by

exploiting the known Bekenstein-Hawking-Wald entropy of 5D black holes, we constrain

the asymptotic behavior of the topological string amplitude at finite coupling but for large

Kähler classes. In section 4, we extend this 5D polarization to the putative “generalized

topological amplitude” introduced in [12], which remains to be constructed, and identify

the canonical transformation as a particular Weyl reflection inside the 3D duality group.

The details of two computations are relegated in appendices A and B.

2. Magic supergravities and topological wave functions

In this section, we briefly review the main results in [12] on the algebraic nature of the

topological string amplitude in “magic” N = 2,D = 4 supergravity theories. Some useful

background can be found in [16, 20].

In these models, the vector multiplet moduli space is a Hermitian symmetric tube

domain M = G/K (a very special case of a special Kähler manifold), G = Conf(J) is the

“conformal group” associated to a Jordan algebra J of degree three, K is the maximal

compact subgroup of G, a compact real form of the “reduced structure group” Str0(J),

and the role of the phase space Heven(X,R) in type IIA compactifications on a Calabi-Yau

three-fold X (or H3(X,R) in type IIB compactifications) is played by the “Freudenthal

triple” associated to J , namely the real vector space

V = R ⊕ J ⊕ J ⊕ R (2.1)

equipped with the symplectic form

ω = dp0 ∧ dq0 + dpi ∧ dqi ≡ dpI ∧ dqI (2.2)

where (p0, pi, qi, q0) are the coordinates along the respective summands in (2.1). V admits a

linear action of G which preserves the symplectic form ω, and leaves the quartic polynomial

I4(p
I , qI) = 4p0N(qi) − 4q0N(pi) + 4∂piN(pj)∂qiN(qj) − (p0q0 + piqi)

2 (2.3)

invariant. The symplectic space V may be quantized by replacing (pI , qI) by operators

p̂I = pI , q̂I = i~ ∂/∂pI acting on the Hilbert space H of L2 functions of nv + 1 variables pI ,

generating the Heisenberg group H with center Z = −i~,

[p̂I , q̂J ] = Z δIJ . (2.4)
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The linear action of G on V leads to a unitary action of G on H by generators in the

universal enveloping algebra of H1

Si 7→ − i

2
~

2 Cijk
∂2

∂pj∂pk
− ~ pi

∂

∂p0
, Ti 7→

i

2
Cijkp

jpk − ~ p0 ∂

∂pi
, (2.5a)

Rji 7→ −δji ~ p0 ∂

∂p0
+ ~ pj

∂

∂pi
− 1

2
Cikl C

jnl
~

(
pk

∂

∂pn
+

∂

∂pn
pk
)
, (2.5b)

D ≡ 3

nv
Rii 7→ −3~ p0 ∂

∂p0
− ~ pi

∂

∂pi
− 1

2
~ (nv + 3). (2.5c)

Here, Cijk is the cubic norm form of J , related to the prepotential F0 describing the vector

multiplet moduli space M via

F0 =
1

6

CijkX
iXjXk

X0
≡ N(Xi)

X0
, (2.6)

and Cijk is the “adjoint norm form”, satisfying the “adjoint identity”

Qi =
1

2
CijkQ

j Qk ⇔ Qi =
1√
N(Qi)

1

2
CijkQj Qk , N(Qi) ≡

1

6
CijkQiQjQk . (2.7)

Thus, the Hilbert space H furnishes a unitary representation of the “Fourier-Jacobi group”

G̃ = G⋉H, known as the Schrödinger-Weil representation.

Moreover, in [12] (without any assumption of “magicness”), a sequence of transfor-

mations was constructed which takes the topological partition function ΨBCOV(ti, t̄ī;xi, λ)

from [15], subject to two sets of holomorphic anomaly equations, into a purely holomorphic

wave function Ψhol(t
i; yi, w) satisfying a single heat equation2

[
∂

∂ti
− i

2
Cijk

∂2

∂yj∂yk
+ yi

∂

∂w

]
Ψhol(t

i; yi, w) = 0 . (2.8)

In magic cases, it was further shown that this holomorphic wave function can be viewed as

a matrix element

Ψhol(t
i; yi, w) = 〈Ψ| exp

(
yip̂

i + (w − tiyi)p̂
0
)

exp(tiTi) |Ω0〉 (2.9)

where |Ω〉0 is the “vacuum” of the Schrödinger-Weil representation, annihilated by q̂I , Si
and the traceless part of Rij , and with charges

D |Ω〉0 = −1

2
(nv + 3)|Ω〉0 , Z |Ω〉0 = −i|Ω〉0 . (2.10)

1For later convenience, we have flipped the sign of q̂I and Z with respect to [12], and reinstored a general

value for ~.
2This Ψhol;GNP(ti; yi, w) is related to the holomorphic wave function Ψhol,ST(ti; λ, ǫ0, ǫi) introduced in [13]

by setting λ = 1 using homogeneity, and Fourier transforming (ǫ0, ǫi) into (w, yi). Ψhol,ST arises as the

holomorphic limit of the BCOV topological amplitude ΨBCOV(ti, t̄ī
→ ∞, xi, λ), whereas Ψhol;GNP may be

obtained directly from ΨBCOV without any limiting or integration procedure.
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The heat equation (2.8) (and ultimately the holomorphic anomaly equations of [15]) can

then be shown to follow from the operator identity in the Schrödinger-Weil representation

of G̃,

Z Ti = p̂0q̂i +
1

2
Cijk p̂

j p̂k , (2.11)

It is also useful to introduce the operator

2Ĵ =
2

3
Z p̂i Ti + p̂0

(
p̂0q̂0 +

1

3
p̂iq̂i

)
= p̂0(p̂0q̂0 + p̂iq̂i) +

1

3
Cijk p̂

i p̂j p̂k , (2.12)

whose significance will become apparent shortly.

3. Topological wave functions and black hole entropy

Our starting point is the observation that the right-hand sides of (2.11) and (2.12) formally

give the electric charges Qi and angular momentum J

Qi = p0 qi +
1

2
Cijk p

j pk , (3.1a)

2J = p0(p0q0 + piqi) +
1

3
Cijk p

i pj pk , (3.1b)

of the 5D black hole (or more generally black ring) related to the 4D black hole with

charges (p0, pi, qi, q0) by the 4D-5D lift [4, 6, 7]. Indeed, it is now well-known that a

four-dimensional BPS black hole with D6 brane charge p0 6= 0 and arbitrary D4,D2,D0

brane charges pi, qi, q0 in type IIA string theory compactified on X may be viewed at

strong coupling as a 5D black ring carrying electric M2-brane charges Qi, M5-brane dipole

moments P i = −pi/p0 and angular momentum Jψ = J , wound around the circle of a

Taub-NUT space with NUT charge p0 [4, 6, 7]. In the absence of D4-brane charge, the

5D configuration reduces to a single 5D black hole placed at the tip of the Taub-NUT

space, as found in [5]. Indeed, with this assignment of charges it may be shown that the

Bekenstein-Hawking entropy of the 4D and 5D black holes agree up to the orbifold factor

1/|p0| [5, 6]. In the context of N = 2 magic supergravities, this amounts to the identity

S4D = π
√
I4(pI , qI) =

2π

|p0|
√
N(Qi) − J2 =

1

|p0|S5D (3.2)

where I4 is the quartic invariant in (2.3) [21]. It should also be noted that the charges

Qi, J defined in (3.1) are invariant under the “spectral flow”

p0 → p0 , pi → pi + p0ℓi , qi → qi −Cijk p
jℓk − p0

2
Cijkℓ

jℓk , (3.3a)

q0 → q0 − ℓiqi −
1

2
Cijk p

iℓjℓk − p0

3
Cijk ℓ

iℓjℓk . (3.3b)

which corresponds to switching on a flux on the Taub-NUT space [5].
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3.1 A 5D polarization for the topological amplitude

The form (2.11) of the holomorphic anomaly equations suggests introducing a new polar-

ization where the operators Q̂i and Ĵ are diagonalized. For this purpose, we note that, at

the classical level, the 5D charges (Qi, P
i, J), supplemented by an extra charge pJ = 1/p0,

are obtained from (pI ; qI) via a canonical transformation generated by

S(p0, pi;Qi, J) = −N(pi)

p0
+Qi

pi

p0
− 2J

p0
. (3.4)

Indeed, a straightforward computation making use of the homogeneity of N shows that

qI =
∂S

∂pI
, P i = − ∂S

∂Qi
= − pi

p0
, pJ = −∂S

∂J
=

2

p0
(3.5)

so that

dS = qI dp
I − (P i dQi + pJ dJ) . (3.6)

This ensures that the change of variables from (pI ; qI) to (Qi, J ;Pi, pJ) preserves the Dar-

boux form of ω,

ω = dpI ∧ dqI = dQi ∧ dP i + dJ ∧ dpJ . (3.7)

Quantum mechanically, the wave function Ψ5D(Qi, J) in the “5D” polarization where Q̂i
and Ĵ are diagonalized is therefore related to the wave function ΨR(pI) in the “real”

polarization [9], where p̂I acts diagonally, via

ΨR(pI) =

∫
exp

(
− i

~
S(pI ;Qi, J)

)
Ψ5D(Qi, J) dQi dJ . (3.8)

Equivalently,

ΨR(pI) exp

(
− i

~

N(pI)

p0

)
=

∫
exp

(
i

~

2J

p0
− i

~

pi

p0
Qi

)
Ψ5D(Qi, J) dQi dJ (3.9)

Indeed, one may check that the operators

Q̂i ≡ i~ p0 ∂

∂pi
+

1

2
Cijkp

jpk , 2Ĵ = i~ (p0)2
∂

∂p0
+ i~ p0 pi

∂

∂pi
+ 2N(pi) (3.10)

acting on the l.h.s. of (3.8) lead to insertions of Qi and 2J in the integral on the r.h.s,

respectively. In words, we have found that the wave function in the 5D polarization is

obtained by Fourier transforming the wave function in the real polarization with respect

to 1/p0 and pi/p0, after multiplication by the tree-level part e−
i
~
N(pi)/p0 .

3.2 5D polarization and 5D black hole degeneracies

In order to interpret the result (3.9), we now recall some facts and conjectures on the rela-

tion between the topological string amplitude and various invariants of the Calabi-Yau X.

First, recall that the real polarized topological wave function ΨR(pI) is related to the

holomorphic topological wave function via [13]

eFhol(t
i,λ) =

(
p0
) χ

24
−1

ΨR(pI) , λ =
4π

ip0
, ti =

pi

p0
. (3.11)
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where Fhol(t
i, λ) is the holomorphic limit t̄ī → ∞ of the topological partition function

F (ti, t̄ī, λ).

Second, recall that the Gopakumar-Vafa conjecture [2, 3] relates the indexed partition

function of 5D spinning BPS black holes to the topological amplitude,3

eFhol(t
i,λ)−F0(ti,λ) =

∑

Qi,J

Ω5D(Qi, J) e−2λJ+2πiQiti . (3.12)

This conjecture also includes a relation to the BPS invariants ngQ of the Calabi-Yau X [2],

eFhol(t
i,λ)−Fpol(t

i,λ) =[M(e−λ)]−χ/2
∏

Qi>0,k>0

(
1 − e−kλ+2πiQiti

)kn0
Q

×
∏

Qi>0,g>0

2g−2∏

ℓ=0

(
1 − e−(g−ℓ−1)λ+2πiQiti

)(−1)g+ℓ

„

2g − 2

ℓ

«

ng
Q

(3.13)

Here,

Fpol(t
i, λ) = −(2πi)3

λ2
N(ti) − 2πi

24
cit

i (3.14)

is the “polar part” of Fhol(t
i, λ), and M(q) =

∏
(1 − qn)−n is the Mac-Mahon function.

Unfortunately, both the BPS invariants ngQ and the 5D black hole degeneracies Ω5D(Qi, J)

so far lack a proper mathematical definition. This is in contrast to the now well-established

relation between Gromov-Witten and Donaldson-Thomas invariants [23, 24],

eFhol(t
i,λ)−Fpol(t

i,λ) = [M(e−λ)]−χ/2
∑

Qi,J

(−1)2J NDT(Qi, 2J) e−2λJ+2πiQit
i

(3.15)

where NDT (Qi, 2J) are the Donaldson-Thomas invariants. Physically, the latter count the

bound states of one D6-brane with 2J D0-branes and Qi D2-branes wrapped along the i-th

cycle in Heven(X,R).

Finally, in [25], the 4D-5D lift was used to argue that NDT(Qi, 2J) ∼ Ω5D(Qi, J),

thereby giving a heuristic derivation of the Gopakumar-Vafa conjecture (3.12). However,

this argument does not account for the powers of the Mac-Mahon function in (3.15) relative

to (3.12), nor for the sign (−1)2J . There is also a discrepancy (most likely due to a differ-

ence in the treatment of the center of motion degrees of freedom) between the prediction of

the infinite product representation (3.13), NDT(Q, 2J) =
∑

g

(
2g − 2

2J + g − 1

)
ngQ, and the con-

siderations in [3, 26], which lead to Ω5D(Q,J) =
∑

g

(
2g + 2

2J + g + 1

)
ngQ. Without attempting to

resolve these issues, we shall regard (3.12) as a definition of the 5D black hole degeneracies

Ω5D(Qi, J), and later assume that log Ω5D(Qi, J) is given by the Bekenstein-Hawking-Wald

formula, barring any “miraculous” cancellations.

Substituting (3.11) into (3.12) and setting ci = 0 for simplicity, we obtain

(
p0
) χ

24
−1

ΨR(pI) exp

(
iπ

2

N(pI)

p0

)
=
∑

Qi,J

exp

(
8πi

J

p0
+ 2πiQi

pi

p0

)
Ω5D(Qi, J) . (3.16)

3Here and below, we follow the conventions in [22], up to minor changes of notation gtop → λ, n →

2J, βi → Qi.
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Barring the power of p0, allowing for rescalings of Qi and J and setting the Planck constant

to ~ = −2/π, we see that (3.9) and (3.16) are consistent provided the topological wave

function in the 5D polarization has delta function support on integer charges Qi, J , with

weights equal to the 5D black hole degeneracies,4

Ψ5D(Qi, J) ∼
∑

Q′
i,J

′

Ω5D(Q′

i, J
′) δ

(
Q′

i −
1

4
Qi, J

′ +
1

8
J

)
. (3.17)

The power of p0 in (3.16) may be attributed to a quantum ordering ambiguity invisi-

ble in the semi-classical discussion in the previous Subsection, or may be absorbed in a

redefinition of Ω5D(Qi, J). Note also that (3.9) was motivated in the context of magic

supergravities, but that (3.16) holds (to the same extent as (3.12)) in arbitrary N = 2

string compactifications.

Thus, we conclude that the 5D black hole degeneracies Ω5D(Qi, J) can be viewed as a

wave function in a particular “5D” polarization, related to the standard real polarization

by the intertwining operator (3.16). The fact that the degeneracies Ω5D(Qi, J) can be

interpreted as components of a wave function in a representation space of the group G̃

gives some support to the general expectation (voiced e.g. in [21, 27]) that they should

arise as Fourier coefficients of a certain automorphic form of G̃.

3.3 Black hole entropy and asymptotics of the topological amplitude

Assuming the validity of the Gopakumar-Vafa conjecture (3.12) (and regardless of the

correctness of the identification (3.17)), we can use our knowledge of the entropy of 5D black

holes to constrain the asymptotic behavior of the topological string amplitude. Recall that

the Bekenstein-Hawking entropy of 5D BPS spinning black holes is given at tree level by [28]

S5D = 2π
√
Q3 − J2 (3.18)

where Q is to be expressed in terms of the electric charges via

Q3/2 =
1

6
CijkQ

iQjQk , Qi =
1

2
CijkQ

jQk (3.19)

Equation (3.18) is valid in the limit where Qi and J are scaled to infinity, keeping the ratio

J2/Q3 fixed and less than unity. Taking into account higher-derivative corrections of the

form
∫
ciA

i∧R∧R together with their supersymmetric partners, the Bekenstein-Hawking-

Wald entropy becomes [29]

S5D = 2π
√
Q3 − J2

(

1 +
ciQ

i

16

Q3/2

Q3 − J2
+ O(c2)

)

(3.20)

which is valid in the same regime. The free energy of rotating BPS black holes in 5 dimen-

sions in a thermodynamical ensemble with electric potentials φi and angular velocity ω,

F5D(φi, ω) ≡ ExtrQi,J

[
S5D − ωJ −Qiφ

i
]

(3.21)

4The factors of 1/4 and −1/8 in this equation are convention-dependent, and so is the value of ~.
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is easily computed to first order in ci, (see appendix B for details)

F5D(φi, ω) = − 1

π2

N(φi)

1 + (ω/2π)2
− 1

8
ciφ

i + O(c2) . (3.22)

This results holds for arbitrary, non-magic supergravities in 5D, and is considerably more

elegant than its Legendre dual (3.20).5

The free energy (3.22) provides the classical (saddle point) approximation to the in-

tegral in (3.9). The fluctuation determinant around the saddle point may be computed in

the magic cases using the results in [21]. Setting

φi = −2πi ti , ω = 2λ , (3.23)

we find

ΨR(XI) ∼ λ
χ
24

−1

(
N(ti)

λ2 + π2

)nv+3
6

exp

[
−(2πi)3

(
N(ti)

λ2
− N(ti)

π2 + λ2

)
+

2πi

8
cit

i + . . .

]

(3.24)

where the prefactor can be trusted in magic cases only. In the scaling limit where the

Bekenstein-Hawking formula can be trusted, the topological coupling λ at the saddle point

is fixed while ti are scaled to infinity, so that the terms displayed in (3.22) are the first

two in a systematic expansion at large ti, for fixed λ. It is noteworthy that the terms

proportional to 1/λ2 and 1/(π2 +λ2) in the exponent cancel in the limit of large λ, leaving

a term of order 1/λ4 only. Incidentally, we note that the linear term in ti in the exponent

induces a correction Qi → Qi− 1
8ci to the 4D-5D lift formulae (3.1), consistent with [30, 29]

in the absence of angular momentum, but giving a different correction than the one found

in [29] when J 6= 0.

On the other hand, at small topological coupling and finite values of ti, (3.11) yields

ΨR(pI) ∼ (p0)1−
χ

24 exp

[
− iπ

2
F0(p

I)

]
∼ λ

χ

24
−1 exp

[
−(2πi)3

N(ti)

λ2
− 2πi

24
cit

i + . . .

]
(3.25)

The semi-classical limit λ → 0 at fixed ti is consistent with the entropy of 4D BPS black

holes, a fact which lies at the basis of the OSV conjecture [1]. For completeness, we

show in appendix B how (3.25) is consistent with the usual form of the BCOV topological

amplitude,

ΨBCOV(ti, t̄i, x
i, λ) ∼ λ

χ
24

−1 exp

(
−(2πi)3

Cijkx
ixjxk

λ2
+ O(λ0)

)
(3.26)

after performing the sequence of transformations given in [12].

The regimes of validity of (3.24) and (3.25) in principle overlap when λ goes to zero and

ti to infinity. While the two results agree in the strict classical limit, the prefactors do not.

5The apparent discrepancy at order ci with the free energy given in eq. (3.23) of [29] is due to the fact

that the chemical potentials eI are conjugate to the 4D charges rather than the ones measured at infinity

in 5D, as recognized in [29]. At zeroth order in ci, the result (3.22) was known to the second author,

R. Dijkgraaf and E. Verlinde in 2005.
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Moreover matching the terms in the exponent would require F1(t
i) ∼ 2πi

8 cit
i + (2πi)3

π2 N(ti),

which violates the assumption that F1 is grows linearly at large ti. This discrepancy

suggests that the two limits ti → ∞ and λ do not commute. It would be interesting to

understand the physical origin of this phenomenon.

4. The generalized topological amplitude in the 5D polarization

In the previous section, we have shown that the 4D-5D lift formula and Gopakumar-Vafa

conjectures had a simple interpretation as a change of polarization in the Schrödinger-Weil

representation of the Fourier-Jacobi group G̃ = G ⋉ H, where G is the four-dimensional

U-duality group and H is the Heisenberg algebra of electric, magnetic and NUT charges.

4.1 Dimensional reduction and extended topological amplitude

Physically, the Fourier-Jacobi group G̃ naturally arises as a subgroup of a larger group

G′, the duality group after reducing the 4D supergravity (or compactifying) down to 3

dimensions. After dualizing the one-forms into scalars, the theory in 3 dimensions can be

expressed as a non-linear sigma model on a quaternionic-Kähler space M3 = G′/SU(2) ×
Gc, where Gc is a compact form of the duality group G in 4 dimensions [31]. The reduction

from G′ to its subgroup G̃ corresponds to decoupling gravity in 3 dimensions. In the

language of Jordan algebras, G′ = QConf(J) is the “quasi-conformal group” associated to

the Jordan algebra J [32, 33, 20]. Its Lie algebra can be obtained by supplementing the

solvable group G̃ with the negative roots p̂I
′
, q̂I , Z

′, obeying the “dual Heisenberg algebra”

[p̂I
′
, q̂

′

J ] = Z ′ δIJ , and introducing a new Cartan generator ∆ ≡ [Z,Z ′], such that Z,Z ′,∆

forms a Sl(2,R) subalgebra commuting with G (see figure 1).

Moreover, the group G′ admits a distinguished unitary representation known as the

“minimal” representation, whose functional dimension nv + 2 is the smallest among the

unitary irreducible representations of G′. The minimal representation of G′ extends the

Schrödinger-Weil representation of G̃ in the following way: classically, the Freudenthal

triple (2.1) is extended into

V ′ = Ry ⊕ Rp0 ⊕ Jpi ⊕ Jqi ⊕ Rq0 ⊕ Rpy (4.1)

equipped with the symplectic form

ω′ = dy ∧ dpy + dp0 ∧ dq0 + dpi ∧ dqi . (4.2)

The linear space V ′ turns out to be symplectically isomorphic to the minimal co-adjoint

orbit of the complexification of G′ (itself isomorphic to the hyperkähler cone over the

quaternionic-Kähler spaceG′/(SU(2)×Gc)), and therefore admits a holomorphic symplectic

action of G′ on (4.1). The minimal representation is obtained by quantizing this action (see

e.g. [33] for details on this procedure). Quantum mechanically, the minimal representation

of G′ may be obtained from the Schrödinger-Weil representation (2.5) by allowing the

center Z = i~ to become dynamical, i.e. supplement the Hilbert space H of L2 functions
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Figure 1: Two-dimensional projection of the root diagram of G′, with respect to the split torus

(∆, D). The subgroup G consists of the roots along the vertical axis. The Fourier-Jacobi subgroup

G̃ = G ⋉ H consists of the roots on and to right of the vertical axis, together with the Cartan

generator ∆. The Heisenberg algebras H and H ′ are exchanged by a Weyl reflection W with

respect to the dotted axis.

of nv + 1 variables pI with an extra variable y, and set,6

Z 7→ iy2, (4.3a)

iq̂0 7→ y
∂

∂p0
, iq̂i 7→ y

∂

∂pi
, ip̂i 7→ iypi, ip̂0 7→ iyp0, (4.3b)

while keeping the same formulae for the action of G as in (2.5c). The rest of the generators

of G′ are obtained by commuting the generators above with

Z ′ 7→ 1

2

∂2

∂y2
− 1

4y6

(
I4(p̂

I , q̂I) + κ
)
, ∆ 7→ y∂y +

1

2
(4.3c)

where the constant κ depends on the ordering chosen in I4(p̂
i, q̂i). In particular,

iq̂′I ≡ [q̂I , Z
′] 7→ i

∂

∂pI
∂y +

1

y4

∂I4(p̂
I , q̂I)

∂p̂I
, (4.3d)

ip̂′I ≡ [p̂I , Z ′] 7→ ipI∂y −
1

y4

∂I4(p̂
I , q̂I)

∂q̂I
. (4.3e)

6With this notation the scalar pI differs from the eigenvalue of bpI by a power of y. We hope that this

will not cause any confusion.
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These formulae define the minimal representation in the real polarization, where the op-

erators p̂I and Z are diagonalized. At fixed value of y, the representation of the subgroup

G̃ ⊂ G′ reduces to the Schrödinger-Weil representation studied in the previous section,

after appropriate y-rescalings.

As argued in [12], the relation between G̃ and G′ on the one hand, and between

the Schrödinger-Weil representation of G̃ and the minimal representation of G′ on the

other hand, is closely analogous to the relation of the Fourier-Jacobi group Sl(2,R) ⋉H3

and Siegel’s genus 2 modular group Sp(4,R), familiar from the mathematical theory of

Jacobi and Siegel modular forms [34] (Here H3 is the three-dimensional Heisenberg algebra

[p, q] = Z, where (p, q) transform as a doublet of Sl(2,R)). In that case, the Schrödinger-

Weil representation of Sl(2) ⋉ H3 on L2-functions of one variable is then given by the

restriction of the metaplectic representation of Sp(4,R) on L2-functions of two variables,

at a fixed value of the center Z. At the automorphic level, the m-th Fourier coefficient of

a Siegel modular form with respect to the action of the center Z yields a Jacobi form of

Sl(2,Z)×H3 of index m [34]. Based on this analogy, it was suggested in [12] that, in cases

where the vector multiplet moduli space is symmetric, the standard BCOV topological

amplitude should arise as a Fourier coefficient at Z = −i of an automorphic form under

the larger group G′ = QConf(J), referred to as the “extended topological amplitude”.

It was further speculated in [12] that the Fourier coefficients at other values of Z yield

non-Abelian generalizations of the Donaldson-Thomas invariants.

At this point, we note that the dimensional reduction to 3 dimensions, which has been

of great utility in describing four-dimensional stationary black holes [31, 27, 35], is also

very useful in order to describe five-dimensional black holes with a U(1) isometry [36 – 39].

The two reductions differ, however, since 5D black holes are best described by reducing the

5D Lagrangian along the time-like direction t first, and then along a space-like direction

ψ, while 4D black holes are more conveniently described by first reducing from 5D to 4D

along the space-like direction ψ, and then from 4D to 3D along the time-like direction t.

The two procedures are related by a Weyl reflection W inside the diffeomorphism group

of the (t, ψ) torus, which happens to be the Sl(2) subgroup of G′ generated by q̂0, q̂
′

0 and

their commutator [39]. The Weyl reflection W maps the Heisenberg algebra {pI , qI , Z}
(enclosed in the vertical box of figure 1) to the Heisenberg algebra H ′ = {q̂′0, Ti, p̂i, Z, p̂0}
(enclosed by the tilted box). In particular, the D2 and D0 brane charges q̂i and q̂0 are

mapped to Ti and q̂
′

0. According to (2.11) and (4.3d) above, the corresponding generators

in the minimal representation are given by

iTi =
1

y2

(
p̂0q̂i +

1

2
Cijkp̂

j p̂k
)
, q̂′0 =

1

y4

[
p̂0(p̂0q̂0 + p̂iq̂i) + 2N(p̂)

]
+

1

2y
p̂0p̂y (4.4)

where p̂y = i∂y. This are indeed the 5D electric charges Qi and angular momentum J

in (3.1), up to a normalization factor and and additive term in q̂
′

0.
7 Moreover, the unit

D6-brane charge requirement p0 = 1, appropriate for lifting a 4D black hole to a smooth 5D

7Despite the fact that equations (4.4) hold only in the minimal representation, whose semi-classical limit

pertains to special solutions whose Noether charge is nilpotent of degree 2, the equality of the conserved

charges (Ti, bq′0) with the electric charge and angular momentum holds in general [39] .
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black hole, is mapped to Z = −i, which is the necessary requirement for the ψ circle bundle

over S2 to be topologically S3 [39]. Conversely, the vanishing of the time-like NUT charge

Z = 0 for 4D black holes is mapped to the absence of p0 charge for 5D black holes [39].

4.2 A 5D polarization for the minimal representation

We now construct the analogue of the 5D polarization in this generalized setting. For

this purpose, we need to supplement the 5D charges (Qi, J) and their canonical conjugate

(P i, pJ) with an extra canonical pair (L, pL), preserving the fact that (Qi, J) are related

to (pI , y, qI , py) by (4.4). The canonical transformation generated by

S′(p0, pi, py;Qi, J, L) =
N(pi)

p0
− pi

p0
Qi +

2JL

(p0)2
+ L

py
p0

(4.5)

satisfies these conditions (compare to (3.4)). Indeed, after some algebra, one finds that the

5D phase space variables (Qi, J, L;P i, pJ , pL) are related to the 4D phase space variables

(pI , py; qI , y) via

Qi = p0 qi +
1

2
Cijk p

j pk , (4.6a)

2J =
1

y

[
p0(p0q0 + piqi) +

1

3
Cijk p

i pj pk
]

+
1

2
p0py (4.6b)

L = p0y , P i =
pi

p0
, pJ =

y

p0
, (4.6c)

pL =
1

y (p0)2

[
p0(p0q0 + piqi) +

1

3
Cijk p

i pj pk
]
− py

2p0
(4.6d)

The generating function of the canonical transformation from (p0, pi, y) to (Qi, J, L) is

obtained by Legendre transforming (4.5) with respect to py, which removes the last term

in (4.5) and sets y = L/p0 consistently with (4.6c) above. Quantum mechanically, the

wave function in the generalized 5D polarization Ψ5D(Qi, J, L) is therefore related to the

generalized wave function in the real polarization Ψgen(p0, pi, y) via

Ψgen(pI , y) e−iN(pi)/p0 =

∫
exp

(
2i
y J

p0
−i

pi

p0
Qi

)
Ψ5D(Qi, J, L) δ(L−p0y) dQi dJ dL . (4.7)

In this new polarization, the “tilted” Heisenberg algebra H ′, with center p̂0 is now canon-

ically represented,

q̂′0 = 2iJ , Ti = iQi ,

Z ′ =
1

2
L∂J , p̂i = L∂Qi

, p̂0 = iL . (4.8)

In fact, the intertwiner (4.7) represents the action of the Weyl reflection W , which takes H

into H ′. Thus, all generators in the 5D polarization can be obtained from those in the 4D

polarization by reflecting the root diagram in figure 1 along the dotted axis and changing

variables

2J → p0, Qi → ypi , L→ y2 . (4.9)
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For example,

Z =
1

2
L∂J , ∆ = L∂L − J∂J , Z ′ = 2J∂L +

2J

L
− N(Qi)

L2
. (4.10)

These results agree and generalize the ones obtained for G′ = G2(2) in section 3.7.2 of [33],

after performing an overall Fourier transform over all pI . Note that (4.10) implies that

(2J,L) transform linearly as a doublet under the Sl(2,R) symmetry generated by Z,Z ′,∆,

which is Ehlers’ symmetry in four dimensions. Thus, the 5D polarization constructed

here would be the most convenient starting point to implement Ehlers’ symmetry on the

generalized topological string amplitude.

5. Discussion

In this note, motivated by the formal analogy between the holomorphic anomaly equations

and the 4D-5D lift formulae for “magic” supergravities, we gave a quantum mechanical

interpretation of the Gopakumar-Vafa relation as a Bogoliubov transformation from the

real polarization, where the 4D magnetic charge operators p̂I operators act diagonally, to

the the “5D” polarization, appropriate to the operators Q̂i and Ĵ . Moreover, we used

to the known Bekenstein-Hawking-Wald entropy of 5D BPS black holes to constrain the

asymptotic behavior of the topological wave function in the real polarization, at finite

topological coupling but large Kähler (or, in the B-model, complex structure) moduli ti.

In the process we found two relatively minor discrepancies: (i) a yet unexplained

shift of genus g → g − 2 in the relation between NDT(Qi, 2J) and Ω5D(Qi, J), and (ii)

a disagreement at subleading order in the expected overlapping regime of validity of the

asymptotic expansions afforded by the 4D and 5D black hole entropy. The former may

probably be solved by a proper accounting of the zero-modes of a 5D black hole at the

tip of Taub-NUT space, while the latter suggests a non-commutativity of the limits λ→ 0

and ti → ∞. It would certainly be useful to resolve these puzzles, and improve our

understanding of 5D black hole micro-states.

In the last section of this paper, we extended the construction of the 5D polarization

to the case where gravity is no longer decoupled, and the duality group is enlarged from

G ⋉ H to a semi-simple Lie group G′. In particular, we found that the intertwiner from

the real to the 5D polarization represents a particular Weyl reflection in the 3D duality

group G′, which exchanges the two directions in the internal 2-torus. Assuming that a

“generalized topological amplitude” living in the minimal representation of G′ can really

be defined, it is interesting to ask what information it may capture. In [12], it was suggested

that Ψgen(pI , y) would give access to non-Abelian Donaldson-Thomas invariants of rank

y2. The 5D polarized wave function Ψ5D(Qi, J, L) constructed herein naturally suggests

an interpretation in terms of counting 5D black hole micro-states of charge Qi, angular

momentum J and dipole charge p0 ∝ L. It would be interesting to see if this conjecture

can be borne out.
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A. Free energy of 5D spinning black holes

In this appendix, we derive eq. (3.22) for the free energy of 5D spinning black holes. We

start by computing the Legendre transform of the tree-level entropy (3.18), and incorporate

the higher-derivative corrections at the end.

Extremizing (3.21) over J , we find that the extremum is reached at

J = − ω√
ω2 + 4π2

Q3/2 (A.1)

leaving

F5D(φi, ω) = 〈
√
ω2 + 4π2 Q3/2 −Qiφ

i 〉Qi
. (A.2)

The extremum over Qi is therefore reached at

Qi =
1

π

φi√
1 + (ω/2π)2

, (A.3)

at which point

F5D(φi, ω) = − 1

π2

N(φi)

1 + (ω/2π)2
(A.4)

To incorporate the effect of the higher-derivative correction in (3.20), we note that the

variation of the tree-level entropy (3.18) with respect to qi is given, to leading order, by

δS5D =
πQ3/2

√
Q3 − J2

QiδQi (A.5)

where we used the fact that δQ3/2 = 1
2Q

iδQi. Thus, the subleading term in (3.20) is repro-

duced by setting δQi = 1
8ci. After Legendre transform, the corrected free energy is therefore

F5D(φi, ω) = − 1

π2

N(φi)

1 + (ω/2π)2
− 1

8
φici + . . . (A.6)

Upon scaling Qi and J to infinity keeping J/Q3/2 fixed and less than one, it is easy to

see that ω is fixed while φi go to infinity. The limit ω → ∞ (corresponding to strong

topological coupling) corresponds to black holes near the Kerr bound J = Q3/2.
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B. From BCOV to real polarization

In this appendix, we provide a check on (3.11) in the case of “magic” N = 2 supergravities,

which illuminates the relation between the constructions in [12] and [13]. For this purpose,

we postulate the form

ΨR(pI) ∼ (p0)α exp

[
− iπ

2

N(pi)

p0

]
, (B.1)

consistent with (3.11) for α = 1 − χ
24 , and show that it leads to a BCOV topological

partition function of the expected form (3.26) after applying the chain of transformations

in [12]. The first step is to obtain the holomorphic wave function via [12]

Ψhol(t
i;w, yi) =

∫
dpI exp

(
iπ

4
pIτIJ(X)pJ +

π

2
pIyI

)
ψR(pI) . (B.2)

where ti = Xi/X0 and w = y0 + tiyi. To evaluate this integral in the saddle point

approximation, define p̃i = pi− p0Xi/X0, p̃0 = p0. Taylor expanding the r.h.s. at small p0,

it is easy to check that

−1

2
pIτIJ(X)pJ =

N(p̃i)

p̃0
− N(pi)

p0
) . (B.3)

Moreover, defining ỹ0 = y0 + yiX
i/X0, ỹi = yi, we have

pIyI = p̃0ỹ0 + p̃iyi . (B.4)

Inserting (B.1) into (B.2) and changing variables from pI to p̃I leads then to

Ψhol(X
I , yI) =

∫
dp̃I (p̃0)α exp

[
− iπ

2

N(p̃i)

p̃0
+
π

2
p̃I ỹI

]
. (B.5)

In the saddle point approximation, using the results in [21], we conclude that

Ψhol(X
I , yI) ∼ (ỹ0)

α′

[N(ỹi)]
β′

exp

[
iπ

2

N(ỹi)

ỹ0

]
, (B.6)

where (except in the Dn case)

α′ = −2α− 1

2
(nv + 3) , β′ = α+

1

6
(nv + 3) . (B.7)

Next, we take the complex conjugate Ψahol(X̄
I , ȳI) of (B.6) and change variable from ȳI

to xi, λ using

xI ≡ [Imτ ]IJ ȳJ = 2 e−
1
4
πi λ−1 (XI + xiDiX

I) . (B.8)

The BCOV topological partition function is finally obtained as

ΨBCOV(ti, t̄i, xi, λ) = e−f1(t)
√

det[Imτ ] exp
(
−π xI [Imτ ]IJxJ

)
Ψahol(X̄

I , ȳI) (B.9)

For magic supergravities, and in the gauge X0 = X̄0 = 1, equations (B.8) are solved by

¯̃y0 = iλ−1 e−K , ȳī = −iλ−1e−Kgīj
(
xj − (tj − t̄j)

)
, (B.10)
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Moreover,

det[Imτ ] = e−
nv+3

3
K , N(ȳī) = iλ−3 e−K N

(
xj − (tj − t̄j)

)
. (B.11)

Altogether, (B.9) evaluates to

ΨBCOV(ti, t̄i, x
i, λ)∼λ−α

(
N(ti − t̄i)

N (xi−(ti− t̄i))

)β′

exp

[
iπ

2

N
(
xi−(ti− t̄i)

)

λ2
−πxI [Imτ ]IJxJ

]

(B.12)

The quadratic correction in the exponent cancels the terms of order 0,1,2 in xi, leaving

only the cubic term in the exponent,

ΨBCOV(ti, t̄i, x
i, λ) ∼ λ−α

(
N(ti − t̄i)

N (xi − (ti − t̄i))

)β′

exp

(
iπ

2

N(xi)

λ2

)
(B.13)

Thus, we find agreement with the expected form (3.26) provided we set

f1(t) = 0 , α = 1 − χ

24
(B.14)

This provides an independent check on (3.11), which was arrived at in [13] by a rather

different line of reasoning from [12]. In particular, the fact that the power of λ in (B.13)

turns out to be opposite to the power of p0 in (B.1) is rather non-trivial.

We note that the second factor in (B.13) contributes to genus one 1-point functions,

unless α = −(nv + 3)/6. Although such contributions are perfectly admissible, it is worth

noting that the special value of α where they disappear is also the one where (B.1) is

invariant under Fourier transform with respect to all pI [21].
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